Mass spectrometry (MS) and nuclear magnetic resonance (NMR) applied to biological macromolecules
نویسندگان
چکیده
The Nobel Prize in Chemistry for 2002 is to be shared between scientists working on two very important methods of chemical analysis applied to biological macromolecules: mass spectrometry (MS) and nuclear magnetic resonance (NMR). Laureates John B. Fenn, Koichi Tanaka (MS) and Kurt Wüthrich (NMR) have pioneered the successful application of their techniques to biological macromolecules. Biological macromolecules are the main actors in the makeup of life whether expressed in prospering diversity or in threatening disease. To understand biology and medicine at molecular level where the identity, functional characteristics, structural architecture and specific interactions of biomolecules are the basis of life, we need to visualize the activity and interplay of large macromolecules such as proteins. To study, or analyse, the protein molecules, principles for their separation and determination of their individual characteristics had to be developed. Two of the most important chemical techniques used today for the analysis of biomolecules are mass spectrometry (MS) and nuclear magnetic resonance (NMR), the subjects of this year’s Nobel Prize award.
منابع مشابه
Advanced information on the Nobel Prize in Chemistry 2002
The Nobel Prize in Chemistry for 2002 is to be shared between scientists working on two very important methods of chemical analysis applied to biological macromolecules: mass spectrometry (MS) and nuclear magnetic resonance (NMR). Laureates John B. Fenn, Koichi Tanaka (MS) and Kurt Wüthrich (NMR) have pioneered the successful application of their techniques to biological macromolecules. Biologi...
متن کاملRevolutionary Analytical Methods for Biomolecules
The Nobel Prize in Chemistry for 2002 is being shared between scientists in two important fields: mass spectrometry (MS) and nuclear magnetic resonance (NMR). The Laureates, John B. Fenn and Koichi Tanaka (for MS) and Kurt Wüthrich (for NMR), have contributed in different ways to the further development of these methods to embrace biological macromolecules. This has meant a revolutionary breakt...
متن کاملBeyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics.
Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological problems from environmental issues to the identification of biomarkers for human diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, accessibility, and ...
متن کاملComputational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic
Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...
متن کاملMetabolomics and cardiovascular biomarker discovery.
BACKGROUND Metabolomics, the systematic analysis of low molecular weight biochemical compounds in a biological specimen, has been increasingly applied to biomarker discovery. CONTENT Because no single analytical method can accommodate the chemical diversity of the entire metabolome, various methods such as nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) have been empl...
متن کامل